2023新高考一卷数学试卷原题题目分析讲评最新出炉 【精品推荐】 提分神器--初中英语语法易错题专训 10倍速抗遗忘轻松记牢英语单词 最受欢迎的全国各大网校VIP课程
下载地址:
资料目录 人教版高中必修及选修数学电子课本 人教版高中必修及选修数学单元测试 人教版高中必修及选修数学期中试卷 人教版高中必修及选修数学期末试卷 人教版高中必修及选修数学同步试题 人教版高中必修及选修数学知识点汇总 人教版高中必修及选修数学课件 人教版高中必修及选修数学教案 人教版高中必修及选修数学讲义 人教版高中必修及选修数学思维导图
内容举例: 5.直线与圆、圆锥曲线的位置关系 (1)直线与双曲线交于一点时,其位置关系不一定相切,例如:当直线与双曲线的渐近线平行时,直线与双曲线相交于一点,但不是相切;反之,当直线与双曲线相切时,直线与双曲线仅有一个交点. (2)在解决直线与抛物线的位置关系时,要特别注意直线与抛物线的对称轴平行的特殊情. (3)若利用弦长公式计算问题,在设直线斜率时要注意说明斜率不存在的情况. (4)对于中点弦问题,可以利用“点差法”求解,但不要忘记验证Δ>0或说明中点在曲线内部. 九、概率、统计 易错知识清单 1.随机事件的概率 (1)正确认识互斥事件与对立事件的关系:对立事件是互斥事件,是互斥中的特殊情况,但互斥事件不一定是对立事件,“互斥”是“对立”的必要不充分条件. (2)需准确理解题意,特别留心“至多……”“至少……”“不少于……”等语句的含义. (3)任何事件的概率都在0~1中,即0≤P(A)≤1.必然事件的概率为1,不可能事件的概率为0. 2.古典概型 (1)古典概型的重要思想是事件发生的等可能性,一定要注意在计算基本事件总数和事件包括的基本事件个数时,它们是不是等可能的;试验中所有可能出现的基本事件只有有限个. 提示 下列三类试验不是古典概型:(1)基本事件个数有限,但非等可能;(2)基本事件个数无限,但等可能;(3)基本事件个数无限,也不等可能. (2)概率的一般加法公式:P(A∪B)=P(A)+P(B)-P(A∩B) 提示 ①公式的作用是求A∪B的概率,当A∩B=时,A、B互斥,此时P(A∩B)=0,所以P(A∪B)=P(A)+P(B);②要计算P(A∪B),需要求P(A)、P(B),更重要的是确定事件A∩B,并求其概率;③该公式可以看作一个方程,知三可求一. 3.几何概型 (1)准确把握几何概型的“测度”是解题关键. (2)几何概型中,线段的端点、图形的边框是否包含在事件之内不影响所求结果. 4.随机抽样 (1)系统抽样的特点:适用于元素个数很多且均衡的总体;各个个体被抽到的机会相等;总体分组后,在起始部分抽样时,采用简单随机抽样. (2)进行分层抽样时应注意以下几点: ①分层抽样中分多少层、如何分层要视具体情况而定,总的原则是层内样本的差异要小,两层之间的样本差异要大,且互不重叠. ②为了保证每个个体等可能入样,所有层中每个个体被抽到的可能性相同. (3)在抽样时,如果总体的排列存在明显的周期性或事先是排好序的,那么利用系统抽样进行抽样时将会产生明显的偏差,即样本的代表性是不可靠的. 5.用样本估计总体 (1)频率分布直方图的纵坐标为 ,每一个小长方形的面积表示样本个体落在该区间内的频率. (2)条形图的纵坐标为频数或频率,把直方图视为条形图是常见的错误. (3)同样一组数据,如果组距不同,横轴、纵轴的单位不同,得到的图的形状也会不同. 6.变量间的相关关系、统计案例 (1)相关关系与函数关系不同.函数关系中的两个变量间是一种确定性关系.例如正方形面积S与边长x之间的关系S=x2就是函数关系.相关关系是一种非确定性关系,即相关关系是非随机变量与随机变量之间的关系.例如商品的销售额与广告费是相关关系.两个变量具有相关关系是回归分析的前提. (2)回归分析是对具有相关关系的两个变量进行统计分析的方法,只有在散点图大致呈线性时,求出的线性回归方程才有实际意义,否则,求出的线性回归方程毫无意义,根据回归方程进行预报,得出的仅是一个预报值,而不是真实发生的值. (3)在实际问题中,独立性检验的结论仅是一种数学关系的描述,得到的结论有一定概率的出错. (4)对判断结果进行描述时,注意对象的选取要准确无误,应是对假设结论进行的含概率的判断. 十、算法、复数、推理与证明 易错知识清单 1.算法 (1)注意起止框与处理框、判断框与循环框的不同. (2)注意条件结构与循环结构的联系:循环结构具有重复性,条件结构具有选择性没有重复性,并且循环结构中必定包含一个条件结构,用于确定何时终止循环体. (3)对条件结构,无论判断框中的条件是否成立,都只能执行两个分支中的一个,不能同时时执行两个分支. (4)循环语句有“直到型”与“当型”两种,要区别两者的异同,循环语句主要解决需要反复执行的任务,要理解循环结构中各变量的具体含义及变化规律. (5)关于赋值语句,有以下几点需要注意: ①赋值号左边只能是变量名字,而不是表达式,例如3=m是错误的. ②赋值号左右不能对换,赋值语句是将赋值号右边的表达式的值赋给赋值号左边的变量,例如Y=x,表示用x的值替代变量Y的原先的取值,不能改写为x=Y.因为后者表示用Y的值替代变量x的值. ③在一个赋值语句中只能给一个变量赋值,不能出现多个“=”. (6)应用循环结构解决问题时,一定要注意两个变量i和S的初始值及运算变量到底是什么,它递增的值是多少,即“步长”为多少,由输出的结果来判断对应的判断条件到底是什么,明确哪儿是计数器,哪儿是赋值器,注意循环体内各语句不能随意颠倒,准确判断结束循环的条件,必要时,要对“边界”单独检验. 2.复数 (1)判定复数是实数,仅注重虚部等于0是不够的,还需考虑它的实部是否有意义. (2)对于复系数(系数不全为实数)的一元二次方程的求解,判别式不再成立.因此解此类方程的解,一般都是将实根代入方程,用复数相等的条件进行求解. (3)两个虚数不能比较大小.
|