2023数学高考押题卷新课标1 【精品推荐】 提分神器--初中英语语法易错题专训 10倍速抗遗忘轻松记牢英语单词 最受欢迎的全国各大网校VIP课程
下载地址:
资料目录 人教版高中必修及选修数学电子课本 人教版高中必修及选修数学单元测试 人教版高中必修及选修数学期中试卷 人教版高中必修及选修数学期末试卷 人教版高中必修及选修数学同步试题 人教版高中必修及选修数学知识点汇总 人教版高中必修及选修数学课件 人教版高中必修及选修数学教案 人教版高中必修及选修数学讲义 人教版高中必修及选修数学思维导图
内容举例: (4)直线与平面垂直的判定 ①定义:若一条直线和一个平面内的任何一条直线垂直,则这条直线和这个平面垂直. ②如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面.即若m α,n α,m∩n=B,l⊥m,l⊥n,则l⊥α.(线面垂直判定定理) ③如果两条平行线中的一条垂直于一个平面,那么另一条也垂直于同一平面.即若l∥a,a⊥α,则l⊥α. ④一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面,即若α∥β,l⊥β,则l⊥α. ⑤如果两个平面互相垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面,即若α⊥β,a∩β=α,l β,l⊥a,则l⊥α.(面面垂直的性质定理) 练习、已知E,F分别是正方形ABCD边AD,AB的中点,EF交AC于M,GC垂直于ABCD所在平面. (1)求证:EF⊥平面GMC. (2)若AB=4,GC=2,求点B到平面EFG的距离 内心:到四个面的距离相等 外心:到四个顶点的距离相等 垂心:四个顶点到底面的高的交点 重心:顶点与底面重心的连线的交点 (5)两平面平行的判定 ①定义:如果两个平面没有公共点,那么这两个平面平行,即无公共点 α∥β. ②如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行,即若a,b α,a∩b=P,a∥β,b∥β,则α∥β.(面面平行判定定理) 推论:一个平面内的两条直线分别平行于另一平面内的两条相交直线,则这两个平面平行,即若a,b α,c,d β,a∩b=P,a∥c,b∥d,则α∥β. (6)两平面垂直的判定 ①定义:两个平面相交,如果所成的二面角是直二面角,那么这两个平面互相垂直,即二面角α-a-β=90° α⊥β. ②如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直,即若l⊥β,l α,则α⊥β. (面面垂直判定定理) 七、空间中的各种角 等角定理及其推论 定理若一个角的两边和另一个角的两边分别平行,并且方向相同,则这两个角相等. 推论若两条相交直线和另两条相交直线分别平行,则这两组直线所成的锐角(或直角)相等. 1、异面直线所成的角 (1)定义:a、b是两条异面直线,经过空间任意一点O,分别引直线a′∥a,b′∥b,则a′和b′所成的锐角(或直角)叫做异面直线a和b所成的角. (2)取值范围:0°<θ≤90°. (3)求解方法 ①根据定义,通过平移,找到异面直线所成的角θ; ②解含有θ的三角形,求出角θ的大小. 2、直线和平面所成的角——斜线和射影所成的锐角 (1)取值范围0°≤θ≤90° (2)求解方法 ①作出斜线在平面上的射影,找到斜线与平面所成的角θ. ②解含θ的三角形,求出其大小. 3、二面角及二面角的平面角 (1)半平面 直线把平面分成两个部分,每一部分都叫做半平面. (2)二面角 条直线出发的两个半平面所组成的图形叫做二面角.这条直线叫做二面角的棱,这两个平面叫做二面角的面,即二面角由半平面一棱一半平面组成. 若两个平面相交,则以两个平面的交线为棱形成四个二面角. 二面角的大小用它的平面角来度量,通常认为二面角的平面角θ的取值范围是 0°<θ≤180° 3)二面角的平面角 ①以二面角棱上任意一点为端点,分别在两个面内作垂直于棱的射线,这两条射线所组成的角叫做二面角的平面角. 如图,∠PCD是二面角α-AB-β的平面角.平面角∠PCD的大小与顶点C在棱AB上的位置无关. ②二面角的平面角具有下列性质: (i)二面角的棱垂直于它的平面角所在的平面,即AB⊥平面PCD. (ii)从二面角的平面角的一边上任意一点(异于角的顶点)作另一面的垂线,垂足必在平面角的另一边(或其反向延长线)上. (iii)二面角的平面角所在的平面与二面角的两个面都垂直,即平面PCD⊥α,平面PCD⊥β. ③找(或作)二面角的平面角的主要方法. (i)定义法 (ii)垂面法 (iii)三垂线法 (Ⅳ)根据特殊图形的性质 (4)求二面角大小的常见方法 先找(或作)出二面角的平面角θ,再通过解三角形求得θ的值. 八.空间的各种距离 点到平面的距离 (1)定义 面外一点引一个平面的垂线,这个点和垂足间的距离叫做这个点到这个平面的距离. (2)求点面距离常用的方法: 1)直接利用定义求 ①找到(或作出)表示距离的线段; ②抓住线段(所求距离)所在三角形解之. 2)体积法其步骤是:①在平面内选取适当三点,和已知点构成三棱锥;②求出此三棱锥的体积V和所取三点构成三角形的面积S;③由V= S·h,求出h即为所求.这种方法的优点是不必作出垂线即可求点面距离.难点在于如何构造合适的三棱锥以便于计算. 直线和平面的距离、平行平面的距离
|