2023年数学高考试卷真题及答案解析视频 【精品推荐】 提分神器--初中英语语法易错题专训 10倍速抗遗忘轻松记牢英语单词 最受欢迎的全国各大网校VIP课程
下载地址:
资料目录 人教版高中必修及选修数学电子课本 人教版高中必修及选修数学单元测试 人教版高中必修及选修数学期中试卷 人教版高中必修及选修数学期末试卷 人教版高中必修及选修数学同步试题 人教版高中必修及选修数学知识点汇总 人教版高中必修及选修数学课件 人教版高中必修及选修数学教案 人教版高中必修及选修数学讲义 人教版高中必修及选修数学思维导图
内容举例: 高中数学必修2知识点 一、直线与方程 (1)直线的倾斜角 定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。因此,倾斜角的取值范围是0°≤α<180° (2)直线的斜率 ①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。直线的斜率常用k表示。即 。斜率反映直线与轴的倾斜程度。 当 时, ; 当 时, ; 当 时, 不存在。 ②过两点的直线的斜率公式: (3)直线方程 ①点斜式: 直线斜率k,且过点 注意:当直线的斜率为0°时,k=0,直线的方程是y=y1。 当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示.但因l上每一点的横坐标都等于x1,所以它的方程是x=x1。 ②斜截式: ,直线斜率为k,直线在y轴上的截距为b ③两点式: ( )直线两点 , ④截矩式: 其中直线 与 轴交于点 ,与 轴交于点 ,即 与 轴、 轴的截距分别为 。 ⑤一般式: (A,B不全为0) 注意:○1各式的适用范围 ○2特殊的方程如: 平行于x轴的直线: (b为常数); 平行于y轴的直线: (a为常数); (5)直线系方程:即具有某一共同性质的直线 (一)平行直线系 平行于已知直线 ( 是不全为0的常数)的直线系: (C为常数) (二)过定点的直线系 (ⅰ)斜率为k的直线系: ,直线过定点 ; (ⅱ)过两条直线 , 的交点的直线系方程为 ( 为参数),其中直线 不在直线系中。 (6)两直线平行与垂直 当 , 时, ; 注意:利用斜率判断直线的平行与垂直时,要注意斜率的存在与否。 (7)两条直线的交点 相交 交点坐标即方程组 的一组解。 方程组无解 ; 方程组有无数解 与 重合 (8)两点间距离公式:设 是平面直角坐标系中的两个点, 则 (9)点到直线距离公式:一点 到直线 的距离 (10)两平行直线距离公式 在任一直线上任取一点,再转化为点到直线的距离进行求解。 二、圆的方程 1、圆的定义:平面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径。 2、圆的方程 (1)标准方程 ,圆心 ,半径为r; (2)一般方程 当 时,方程表示圆,此时圆心为 ,半径为 当 时,表示一个点; 当 时,方程不表示任何图形。 (3)求圆方程的方法: 一般都采用待定系数法:先设后求。确定一个圆需要三个独立条件,若利用圆的标准方程, 另外要注意多利用圆的几何性质:如弦的中垂线必经过原点,以此来确定圆心的位置。 3、直线与圆的位置关系: 直线与圆的位置关系有相离,相切,相交三种情况,基本上由下列两种方法判断: (1)设直线 ,圆 ,圆心 到l的距离为 ,则有 ; ; (2)设直线 ,圆 ,先将方程联立消元,得到一个一元二次方程之后,令其中的判别式为 ,则有 ; ; 注:如果圆心的位置在原点,可使用公式 去解直线与圆相切的问题,其中 表示切点坐标,r表示半径。 (3)过圆上一点的切线方程: ①圆x2+y2=r2,圆上一点为(x0,y0),则过此点的切线方程为 (课本命题). ②圆(x-a)2+(y-b)2=r2,圆上一点为(x0,y0),则过此点的切线方程为(x0-a)(x-a)+(y0-b)(y-b)= r2 (课本命题的推广). 4、圆与圆的位置关系:通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定。 设圆 , 两圆的位置关系常通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定。 当 时两圆外离,此时有公切线四条; 当 时两圆外切,连心线过切点,有外公切线两条,内公切线一条; 当 时两圆相交,连心线垂直平分公共弦,有两条外公切线; 当 时,两圆内切,连心线经过切点,只有一条公切线; 当 时,两圆内含; 当 时,为同心圆。 三、立体几何初步 1.柱体、锥体、台体的表面积与体积 (1)几何体的表面积为几何体各个面的面积的和。 (2)特殊几何体表面积公式(c为底面周长,h为高, 为斜高,l为母线) (3)柱体、锥体、台体的体积公 (4)球体的表面积和体积公式:V = ; S = 2.空间直角坐标系
|